102 research outputs found

    Variational approach to time-dependent fluorescence of a driven qubit

    Full text link
    We employ the Dirac-Frenkel variational principle and multiple Davydov ansatz to study time-dependent fluorescence spectra of a driven qubit in the weak- to strong qubit-reservoir coupling regimes, where both the Rabi frequency and spontaneous decay rate are comparable to the transition frequency of the qubit. Our method agrees well with the time-local master-equation approach in the weak-coupling regime, and offers a flexible way to compute the spectra from the bosonic dynamics instead of two-time correlation functions. While the perturbative master equation breaks down in the strong-coupling regime, our method actually becomes more accurate due to the use of bosonic coherent states under certain conditions. We show that the counter-rotating coupling between the qubit and the reservoir has considerable contributions to the photon number dynamics and the spectra under strong driving conditions even though the coupling is moderately weak. The time-dependent spectra are found to be generally asymmetric, a feature that is derived from photon number dynamics. In addition, it is shown that the spectral profiles can be dramatically different from the Mollow triplet due to strong dissipation and/or multiphoton processes associated with the strong driving. Our formalism provides a unique perspective to interpret time-dependent spectra.Comment: 19 pages, 8 figure

    Dielectric Property of MoS2 Crystal in Terahertz and Visible Region

    Full text link
    Two-dimensional materials such as MoS2 have attracted much attention in recent years due to their fascinating optoelectronic properties. Dielectric property of MoS2 is desired for the optoelectronic application. In this paper, terahertz (THz) time-domain spectroscopy and ellipsometry technology are employed to investigate the dielectric response of MoS2 crystal in THz and visible region. The real and imaginary parts of the complex dielectric constant of MoS2 crystal are found to follow a Drude model in THz region, which is due to the intrinsic carrier absorption. In visible region, the general trend of the complex dielectric constant is found to be described with a Lorentz model, while two remarkable peaks are observed at 1.85 and 2.03 eV, which have been attributed to the splitting arising from the combined effect of interlayer coupling and spin-orbit coupling. This work affords the fundamental dielectric data for the future optoelectronic applications with MoS2.Comment: 6 page

    Photoluminescence mechanism and applications of Zn-doped carbon dots

    Get PDF
    Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophysics but also imparts them with multifunctionality. However, unlike nonmetal doping, typical metal doping results in low fluorescence quantum yields (QYs), and an unclear photoluminescence mechanism. In this contribution, we detail results concerning zinc doped CDs (Zn-CDs) with QYs of up to 35%. The zinc ion charges serve as a surface passivating agent and prevent the aggregation of graphene p–p stacking, leading to an increase in the QY of the Zn-CDs. Structural and chemical investigations using spectroscopic and first principle simulations further revealed the effects of zinc doping on the CDs. The robust Zn-CDs were used for the ultra-trace detection of Hg2+ with a detection limit of 0.1 mM, and a quench mechanism was proposed. The unique optical properties of the Zn-CDs have promise for use in applications such as in vivo sensing and future phototherapy applications

    Clinical Application of SARS-CoV-2 IgM and IgG Antibody Detection Using the Colloidal Gold Immunochromatography Assay

    Get PDF
    The COVID-19 pandemic, which was caused by SARS-CoV-2, has had a significant effect on global public health, economies, and societies worldwide. Serum antibody testing is a critical method for the diagnosis of COVID-19 and can complement RT-PCR in the diagnosis of COVID-19 patients; however, the performance of rapid antibody assays in the clinical setting has not been established. Rapid antibody assays were evaluated by investigating 296 COVID-19-positive individuals and 542 negative individuals confirmed by clinical diagnosis. The clinical diagnostic results were used as controls to evaluate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), kappa, and 95% confidence interval (CI) of the rapid tests. IgM-positivity had a sensitivity of 86.1% and specificity of 99.1%. IgG-positivity had a sensitivity of 86.5% and specificity of 98.7%. The sensitivity of combined IgM- and IgG-positivity in clinically confirmed patients was 73.1% in the early stage (1-7 days after symptom onset) and reached 99% 15 days after symptom onset. The concordance between rapid antibody-positive tests and clinical diagnosis-positivity had a kappa value of 0.93. In addition, the false-positive rate of IgM and IgG combined nucleic acid detection was 30% in the early stage. The combined use of IgM and IgG could serve as a more suitable alternative detection method for patients with COVID-19. The rapid antibody test can be considered as an excellent supplementary approach for detecting SARS-CoV-2 in clinical application

    Scour protection of submarine pipelines using rubber plates underneath the pipes

    Get PDF
    YesThis paper presents the results from laboratory experiments to investigate the protection of scour around submarine pipelines under unidirectional flow using a rubber plate placed underneath the pipes. The pressure difference on the two sides of the pipeline is the driving force to initiate the movement of sediment particles and can be obtained by force balance analysis. Experiments covering a wide range of incoming flow velocity, pipe diameter and plate length show that there exists a critical pressure difference over which the movement of sediment and, thus, scour takes place. Analysis of the experimental results demonstrates that this critical pressure difference is related to the pressure difference of the axial points between upstream and downstream of the pipe, which can be easily determined. This critical pressure difference is used to develop an empirical formula for estimating the critical length of the rubber plate, over which the sediment movement and scour will not take place. Good agreement between the experiments and calculated critical plate length using the proposed formula is obtained.National High-Tech Research and Development program of China (863 Program, Grant No.2008AA09Z309), National Nature Science Fund of China (Grant No.50879084, 51279071 and 51279189), the Open Funding from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKLH-OF-1306

    HDAC Inhibitors Act with 5-aza-2′-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells

    Get PDF
    5-aza-2′-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell proliferation was not observed when cells with knockdown of DNA methyltransferase 1 (DNMT1), or double knock down of DNMT1-DNMT3A or DNMT1-DNMT3B were treated with HDACI, implying that the demethylating function of 5-aza-CdR may be not involved in this synergistic effect. Further study showed that there was a causal relationship between 5-aza-CdR induced DNA damage and the amount of [3H]-5-aza-CdR incorporated in DNA. However, incorporated [3H]-5-aza-CdR gradually decreased when cells were incubated in [3H]-5-aza-CdR free medium, indicating that 5-aza-CdR, which is an abnormal base, may be excluded by the cell repair system. It was of interest that HDACI significantly postponed the removal of the incorporated [3H]-5-aza-CdR from DNA. Moreover, HDAC inhibitor showed selective synergy with nucleoside analog-induced DNA damage to inhibit cell proliferation, but showed no such effect with other DNA damage stresses such as γ-ray and UV, etoposide or cisplatin. This study demonstrates that HDACI synergistically inhibits cell proliferation with nucleoside analogs by suppressing removal of incorporated harmful nucleotide analogs from DNA
    • …
    corecore